
https://www.echetana.com/Vol.-08, No.-03, July-September 2023, pp. 01-06

1

Experimental Research on Software
Quality Assurance using Artificial Intelligence

Dr. Ajay Krishna Tiwari

Academician & Economist and Ph.D. Guide
Dr Pura Ram Meghwal, HOD, Research Director
IASE Deemed to be University, Sardarshahar, huru

Email-drajayhod@gmail.om, Mob.-9251616036

First draft received: 12.07.2023, Reviewed: 18.07.2023, Accepted: 26.07.2023, Final proof received: 30.07.2023

Abstract

Software systems are getting bigger and bigger as the foundation of society. and complexity and
connectivity, and in times of extreme uncertainty Innovative development, continuous change, expansion
and environmental adaptation Under such circumstances, it is essential to build quality, verify and
Evaluation/correction/management activities are exploratory and adaptive in nature. where machine
learning with generalization ability Data-driven optimization for new objects and situations genetic
algorithm genetic Algorithm; From request to maintenance. The use of AI for quality activities is being
researched and practiced in this research paper types of AI mainly machine learning and As an AI activity
related to software quality in general overview of requirements followed by design and implementation of
specific requirements, Testing debugging Other quality control and maintenance procedures Separately,
we'll explain AI use efforts related to quality in a broader way.

Keywords: Artificial Intelligence, Software Quality Assurance, Innovative development, Data-driven
optimization, enhancing qualities etc.

Introduction

Holistic Quality Activities using AI - from a process and

objective perspective Main use of AI for pipeline quality

related activities Table 1 summarizes the results of AI use.

On the basis of classification. properties of the source process

product or data) Attribute prediction and inference Attribute

identification and extraction Transformation and generation

of targets As a process that is directly related to product

quality assurance, This includes testing, debugging, quality

control, etc. use of AI through systematic testing for

verification and validation by product quality improvement,

product defect prediction, and They have a quality

assessment and defect report management initiative

simultaneously In the process of requirements, design,

implementation and maintenance Efficient production and

quality improvement through the use of AI is a group, Later

including author's results It is necessary to explain the

various AI usage initiatives.

Use of AI for Quality in Requirements

July-September 2023, Volume -8, No.-III ISSN-2455-8729 (E), 2231-3613 (P) SJIF 2023-7.286 CIJE Quarterly/01-06
Dr Ajay Krishan Tiwari

Dr Pura Ram Meghwal

2

Complex requirements documents continue to achieve and

change a lot Especially in difficult situations through

machine learning-based natural language processing Efficient

and adaptive processing is useful. Efforts to use AI in

education holistically to achieve need analysis of

requirements Organized to prioritize requests for particular

requests in analysis, classification of non-functional

requirements, validation summary, etc. Enhancing qualities

such as consistency and clarity, Afterwards, requirements can

be incorporated and verified correctly and efficiently. and

contributes to the improvement of product quality. explain

the quality assessment and classification efforts of.

Requirements Quality Evaluation

As a representative quality of the required specifications

IEEE/ISO/IEC 29148 2018 lists the following quality

characteristics: Individual Requirements Implementation

Freedom Ambiguity Consistency Completeness Uniqueness

Feasibility Traceability Verification and completeness

consistency satisfaction of set of requirements Clarity,

especially unambiguity, of the scope of the definition

evaluable by natural language processing For example in 4,

long-term short-term memory; Transfer of deep learning

model based on LSTM by learning and fixing in the target

domain It automatically judges grammar and ambiguity in

the problem domain. focused on machine learning Software

quality using AI Guarantee

Here, since the scale of the data is important in deep

learning, mechanical

Back-translation (e.g. English → Spanish → English)

expanding training data

classification of needs by capturing the features of the

requirement document using machine learning, non-machine

security requirements and utility requirements automatically

classified into individual quality requirements such as Can

support efficient and error free processing of large volume

request documents for example in [5], support is provided

using lexical and syntactic features. Support Vector Machine

(SVM) Automatic classification is done by. [6] in basic A

comparative evaluation of various machine learning

algorithms is done in brief. re BERT Bidirectional Encoder in

Natural Language Processing Since Representation from

Transformers 7 Based on large number of generic documents

using transformer model Initial learning of linguistic

expressions and fine-tuning in the target domain Analytics is

active and relevant analytics are expected. Tracing that is

being implemented on essential documents as waiting is

possible.

Encoder/Decoder and Self-Attenuation

 It is a neural machine translation model that combines B

uses the transformer model labeled ERT mask some

unmarked text and Part guessing task and input sentence

continuity recognition task Understanding context and

sentence relationships is possible through training For

example, in 8, B ERT is used Classification of functional

requirements documents Four Using AI for Quality in Design

and Implementation complex quality requirements massive

or variable state Then, among a myriad of possible design

and implementation options, It is difficult to keep selecting

things manually and have AI support.

Self-adaptive re-autonomy

Explain quality assurance and improvement through dynamic

programming.

1 Self-optimization of the architecture built-in or Fixed in

IoT software system the design and implementation of such

systems often need to respond to changes in the environment

and conditions. Has properties like performance efficiency

and energy efficiency So, keep on securing the desired

quality with AI There are attempts to self-optimize the

architecture so that for example 9 especially energy

efficiency and Can you predict when you'll exceed your

allowance for data traffic? Reinforcement learning reveals

optimal architectural adaptive patterns selection and

adaptation turn these self-adaptive practices Pairing can also

be considered part of adaptive maintenance.

2 components reuse Proven data in software design and

implementation design pattern and component library frame

work’s reuse only makes the development process more

efficient Contributes to quality improvement including

reliability Here, the application of machine learning is

specifically Searching for a set of components matching a

requirement or context, this is useful for evaluating

reusability etc.

This Photo by Unknown Author is licensed under CC

https://www.trustinsights.ai/resources/thought-leadership/instant-insights/instant-insights-the-6c-data-quality-framework/
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/

July-September 2023, Volume -8, No.-III ISSN-2455-8729 (E), 2231-3613 (P) SJIF 2023-7.286 CIJE Quarterly/01-06
Dr Ajay Krishan Tiwari

Dr Pura Ram Meghwal

3

Automatic Programming (Generative and Synthesized)

 There are also reuse and sequence generation Efficient and

high-quality design and automated programming through

generation and synthesis useful for implementation

Exploratory generation by GA and machine translation

generation through translation, etc. Sing individual solution

candidates expressed as genes, Selected evolution-inducing

genes based on fitness functions then repeat operation like

crossover with other genes and mutations A genetic program

that iteratively searches for an approximate solution Genetic

programming (GP) extends GA Treat the representation of

the tree structure of the program as a gene. It is a method of

sequentially generating a program that turns out to be a

solution. For example [again about GA target programming

Induction of language-specific gene creation and deletion

mechanisms Furthermore, it restricts the commands available

on the programming language.

To reduce the search space and meet simple requirements.

GA based efforts that make it possible to generate code

Incorporate features of programming languages accurately

Expensive and of limited size and material by machine

translation use of effort transformer Code table from a large

collection of program source code Pre-learn and fine-tune the

current language model A program through code generation

and completion from requirements documents Translating

code from one riming language to another and even program

improvement conciseness/comprehension support

identification of similar code fragments code BERT 1 2] and

Cu BERT [13] known as Code BERT is a natural language

description that describes the source code and its contents

Bimodal learning by finding code based on demands and

code generation, and vice versa from code to documentation

trying to generate For example, the code T5 [14, as shown in

Figure 1 In pre-training, we learned the correspondence

between the natural language description and the code.

Masking and predicting identifiers like pre-training Through

practice, highly accurate code translation is done considering

the identifiers. Benchmark data for comparison and

evaluation of methods Tastes have also been received 15

these attempts General-purpose programming language

without manual feature design A large and high-quality code

corpus that can be handled is the key for example in 16 there

will be 54 million repositories on GitHub Acquisition of a

language model from a total of 1 59 GB of code obtained

from and use it to automatically extract the contents of the

function from the function name and comments. GitHub

Copilot, a service that is complementary.

Use of AI in testing and input with basic description and

code

In dynamic verification of programs using test cases, all the

following activities will be optimized and made effective

using AI. Working on efficiency. one of the security tests AI

use is also active to detect vulnerabilities in the form of Ring.

⚫ Test Planning: Highly accurate prediction of test man-

hours and defects

⚫ Test Design and Execution: Test case generation and

exploratory discovery-based testing included

⚫ Test iteration: for test case priority Efficient regression

testing with test man-hour prediction the effort and effort put

into testing affects the quality of the product. There is a

report that this is the most deciding factor [17].

There In planning the test, type of project, requirements,

Estimating the appropriate number of man-hours to scale is

an important research topic. In general, situations where there

is a certain amount of historical project data, Machine

learning-based prediction should be machine learning-based.

Predictors are known to outperform predictions (such as

simple regression analysis). This type of test is particularly

useful for man-hour forecasting projects. While planning the

cost and schedule of the entire project, It is useful for

building a team. For example, in [18] a test engineer for a

public dataset Case-based as a machine learning algorithm

for number prediction Case-Based Reasoning (CBR), Multi-

layer Perceptron (Multilayer Perceptron; MLP), support

vector Regression (Support Vector Regression; SVR), GP,

Decision Tree (Decision Tree; DT), especially SVR, GP and

DT Said to be excellent.

Defect Prediction (Bug Prediction)

Properly align the effort and activities required during the

testing process Timely and highly accurate latent defect (bug)

prediction for the target product is useful for management. by

prophecy This will allow for a more thorough examination of

the plan of the places, and review, design and re-examine the

entire test plan, It is also possible to reduce capabilities. fault

prediction model Dell believes it is a defect density model.

software reliability development model; SRGM) [19]. Defect

density model is mainly based on number of lines of code

and input/output. and use product attributes as a machine

learning algorithm latent defects for each module or part of

the product due to Predict the presence and number of

damages. Module prone to failure It is also called fault-prone

module prediction. For example, [19] considers the utility

cost of dealing with imbalanced data. Based on Cost-

Sensitive Learning (CSL) Extended by large margin

dispensing machine Distribution Machine (LDM) is used

Imbalanced data set with 7% to 20% of the total We have

July-September 2023, Volume -8, No.-III ISSN-2455-8729 (E), 2231-3613 (P) SJIF 2023-7.286 CIJE Quarterly/01-06
Dr Ajay Krishan Tiwari

Dr Pura Ram Meghwal

4

been able to make high-precision predictions on the other

hand, the reliability enhancement model is based on time-

series fault detection data.

 Using data to focus on future specifics Predict the

cumulative number of defects discovered by time. typical A

non-homogeneous Poisson overpass has been proposed as a

predictive model in the fault detection process. Modeled by

Non-homogeneous Poisson Process (NHPP) There is

ornamentation and its elaboration. In addition to the number

of defects detected, predictive models that take as input the

characteristics of a project or process or person There is also

a model that predicts by module [20]. more time series an

approach to identifying more complex and unique patterns in

columnar data. The combination is called data-driven SRGM,

and is used in SVM, GA, neural Network (Artificial Neural

Network; ANN) AI use is active [21]. For example, the

author as shown in figure 2, the past Using time-series fault

detection data from similar projects LSTM model by training

new running projects [22]. 5.3 Test Case Generation Test

schedules useful for defect detection can be generated from a

near-infinite execution range. in choosing a suitable finite set

of tests, symbolic execution, search-based test testing; set),

combination

There are input value output methods like test, CT.

Especially with respect to SBT, AI is used to evaluate and

discover useful input values. Applications are active. SBT is

a measure of the degree of achievement of the requirements

to be achieved. It can be evaluated objectively based on the

designed evaluation function, I want to achieve using a

predictive search algorithm It is a way of generating a set of

test cases that satisfy the requirements. (see Figure 3).

Mainly follow steps A to D below [23].

 a) Evaluation function that quantitatively evaluates the

degree of achievement of requirements (e.g. program path

coverage, execution time)

b) Test suite in the form of a set of ready-made test cases

Input and execute the test and get the value of the evaluation

function

c) Based on test suite with excellent evaluation function

values, the heuristic search algorithm finds to generate a new

test suite (algorithm (e.g. GA/GP, particle swarm

optimization, machine learning, etc.)

d) Repeat b and c until the search termination condition is

met. Run (e.g. coverage ≥ 90%) SBT is actively involved in

testing continuous control systems. It is implemented. For

example, in [24], as shown in Figure 4, Genes can be defined

as signal amplitudes, time widths, changes (e.g., step

functions). number, sine function, etc.), and adding them up,

A signal train is generated. Then, by applying gap, gene by

rearranging, different signal sequences are generated

automatically. Linking with model-based development tools

such as Simulink They are active too. In [25], several studies

of Simulink model testing are presented. Automatic

generation of test input values by SBT considering the

diversity It is showing. In particular, the structural network of

the Simulink model However, the output signal is not

sufficient for fault detection. The output varies depending on

the characteristics and distance between the signals.

originates in Improving search efficiency is an issue in the

actual operation of SBT. Various attempts have been made.

For example, in [26] Unrealistic input signal, taking into

account the SBT of the control system To stop tests based on

combinations (scenarios), Based on the actual driving

position distribution obtained from the actual driving data,

Search efficiency is improved by evaluating the keywords

and prioritizing the search location. we are trying to improve

Additionally, the values assigned to several parameters are a

combination of to test the CT, the combinations are complete

and the number is pressed. Attempts have been made to

apply AI to derive a set of test cases, for example, [27] uses

GA, and [28] uses other meta- It uses both the Lis tic

algorithm and Reinforcement Learning.

Test Priority

Regression testing can be done if program changes are

applied to existing machines. It should be verified that the

changes were successful before committing to ensure that

functionality is not adversely affected. This is to be

confirmed by executing the existing test case group. Massive

development and continuous building in agile development

Continuous Integration (Continuous integration; CI), once

build and Limited man-hours and time for regression testing

is increasing. In such situation give priority to test case group

Attempt to execute priority test from highest ranking It is

becoming active. Finding the optimal solution is often NP-

hard. Prioritization and selection by machine learning within

the problem Advocacy efforts are active [29]. 5.4

Vulnerability Detection Large-scale analysis of known

security vulnerabilities through machine learning Efforts are

underway to automatically detect this on simulated code.

For example, in [30], as shown in Figure 5, a convolutional

neural network Convolutional Neural Network (CNN) and

Recurrent Neural Networks We use a neural network) to

extract features on a distributed representation of the code.

Identify and list common vulnerability types (common

weakness Calculation; CWE) vulnerabilities are labeled and

randomized Detected by Forest. here in machine learning

Since [30] the quality and quantity of training data is an issue

in rule the warnings and issues found by base static analysis

tools are It is associated with each CWE, and based on the

July-September 2023, Volume -8, No.-III ISSN-2455-8729 (E), 2231-3613 (P) SJIF 2023-7.286 CIJE Quarterly/01-06
Dr Ajay Krishan Tiwari

Dr Pura Ram Meghwal

5

results of applying the tool, we’ve got a huge amount of

correct data for vulnerable spots.

Use of AI in debugging Creating defects in code

mainly taking advantage of test results Defect localization

that identifies locations and automated processing that

implements the results Applications of AI for program

modification are active.

Defect Localization (Bug Localization)

Fault localization (FL) includes dynamic testing. For test

execution results, static code analysis results, and defect

reports. statements and actions the root cause of the defect is

determined in units of each program element in the code,

such as Count the suspect as a causal factor. For example,

Failed test cases, based on test run results the more elements

that are executed by the static analysis results in the same

Based on this, the more complex the element, the more

suspicious it is. doubt it Based on ranking by manual or

automatic the objective is to promote efficient program

modification. However, there is no single FL method

available that is suitable for all situations. No. Therefore,

different conjectures are proposed based on different feature

quantities. we add the values of Rank Learning (learning-to-

rank) FL efforts are being studied. For example, extended in

[31] Using Extended MLP, test execution results, complexity

and parallelism High-precision FL is realized by various

feature quantities.

 Automatic Program Repair (APR)

A technique for automatically correcting defects found in

tests etc. Happen. For code, typically as shown in Figure 6,

After the defect condition has been identified by FL etc., the

correction patch candidate generate complements, rank them

by machine learning etc., and test After checking the

correctness by, we finally receive the revised patch. The

generation of fix patch candidates is based on past fix trends.

manually created conversion patterns/rules and templates,

Automatically learned by applying machine learning to past

improvement results Transformation, exploratory

transformation by GA/GP and their combination This is

realized by, for example, in [32] the variable type extension

changes, modifications to conditional statements,

changes/insertions in method execution, and A patch

candidate group is generated using various conversion rules

Then, a pre-trained logistic regression model Ranked by [33]

in Encoder/Decoder Program before and after correction at

the time of previous defect correction, by combining the data

Learning the Correspondence of Village Abstract Syntax

Tree with Surrounding Context and apply the patch to the

new code. Candidates are generated and ranked by CNN.
Many of the current APR methods are simple It only fixes

minor defects, but sufficient quantity and quality of test cases

By preparing the AI, we entrusted the correction of simple

defects to the AI and developed it. The originator can expect

a form that tackles complex problems. In [34] is the use of AI

in the development of open source software. Submit an

automatic correction proposal that is It has been reported that

there are cases in which patients are accepted without child

This can be said to be a form of value co-creation by AI and

humans.

AI utilization in other quality control

in quality control, other than testing and debugging, quality

characteristics There are efforts to utilize AI for quality

evaluation and defect report management.

 Quality assessment and prediction in addition to functional

suitability and reliability-based defect handling, Evaluation

of various product quality characteristics by machine

learning and future Prediction has been researched and

practiced [36]. Machine learning can be used to evaluate

quality. It is also useful for adjustment and adaptation of

price standards. The authors for the evaluation, DT based on

the review result by the developer Supervised learning by

using We have implemented a method that incorporates

existing features into criteria.

Defect Report Management

A large number of defect reports (bug reports and defect

slips) are obtained. In a continuing situation, mechanics, as

well as the treatment of requirements documents, Processing

through learning-based natural language processing is useful.

example for example, the authors applied BERT to eliminate

duplicate defect reports. We have implemented a method to

identify [38]. In particular, in the use of deep learning,

explain ability is important for decision making. holds the

key to As shown in Fig. 7, the authors used CNN to The

defect report group is fixed in a short time and it takes a long

time. When classifying into objects, we apply a visualization

method to classify them. Based on the concreteness of the

representation of defect reports in the model and being

specific will save time (e.g. “using 19990914 build”),

identifying a long tendency to be abstract.

This Photo by Unknown Author is licensed under CC BY-

https://ignatiawebs.blogspot.com/2018/01/in-search-for-ai-for-critical-thinking.html
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://creativecommons.org/licenses/by-nc-sa/3.0/

July-September 2023, Volume -8, No.-III ISSN-2455-8729 (E), 2231-3613 (P) SJIF 2023-7.286 CIJE Quarterly/01-06
Dr Ajay Krishan Tiwari

Dr Pura Ram Meghwal

6

Using AI for Quality in Maintenance & software

maintenance-

 Based on ISO/IEC 14764 2006 Corrective Maintenance

Preventive Maintenance Adaptive Maintenance Emergency

Maintenance the APR described above is also a helpful

method for corrective maintenance. In addition, in preventive

maintenance, design and implementation detects favorable

and unfavorable sizes of It is important to continue using

AI. .1 Finding Design Patterns etc. A specific preferred

design that solves a common design problem. The shape of

an aggregate is called a design pattern, and the result of its

application is called a design pattern. By detecting this during

loading, we can understand the intent and quality of the

design, It is possible to move forward effectively with the

maintenance of descendants. However, for specific

applications Form topics vary according to constraints and

requirements, and often Rule-based detection is difficult.

Features such as the complexity and scale of known design

patterns from various application results through learning by

ANN of the measured values of A highly accurate automatic

detection method has been implemented Similar detection

efforts include: Complexity that makes maintenance a

problem and Provisional Adverse Design, etc. (Design

Proposal) (also called code smell, technical debt etc.) auto

detection attempt 2 Improve and track design and

implementation to eliminate smear and technical debt,

external behavior Refactor code to improve internals while

preserving is useful, and AI is used 4 3]3]. To improve It is

often necessary to track and handle various artifacts, not just

code. Traceability among deliverables. AI use is also active

for identification.

Conclusion

In this paper Overview of AI Uses Related to Quality

Assurance In particular, he explained the quality assurance

activities that have made significant progress in the

application. To promote inductive technology activities based

on data, infrastructure to ensure the quality and quantity of

data trained by its model quality (specifically predictive

performance, robustness and interpretability) and the key to

success is the correspondence of the achieved results to the

goals Therefore, improvements in robustness and

interpretability, such as machine learning and AI, Joint use of

quality assurance technology is also essential. Synergistic

effects should be demonstrated with AI quality assurance as

two wheels of a vehicle. For example, the author

Systematization of Machine Learning Design Patterns [4 5

We are working on multi-digit requirements analysis, and

Waiting to join AI application efforts.

References

[1] D. Zhang, et al. al., (2005) “Machine Learning

Applications in Software Engineering,” Series on Software

Engineering and Knowledge Engineering- PP 16-19

[2] S. Shafiq, et al. al., (2007) A Literature Review of Using

Machine Learning in Software Development Life Cycle

Stages,” IEEE Access, PP- 11-23,

[3] K. Kaur, et al. al., (2021). “A Review of Artificial

Intelligence Techniques for Requirement Engineering,”

Computational Methods and Data Engineering, PP-56-58

 [4] I. M. Subedit, et al. al. (2021), “Application of Back

translation A Transfer Learning Approach to Identify

Ambiguous Software Requirement nets,” ACMSE PP-23-34

[5] Z. Kurchatovia, et al. al. (2017), “Automatically

Classifying Functional and Nonfunctional Requirements

Using Supervised Machine Learning,” PP-78-79

[6] P. Teele, et al. al., (2021) “Classification and

Prioritization of Software Requirements using Machine

Learning g A Systematic Review,” Confluence.PP-67-69

[7] J. Devlin, et al. al., (2018) “BERT: Pre-training of deep

bidirectional transformers for language understanding,”

arXiv:1810.04805, PP- 78-82

[8] T. Hey, et al. al., (2020) “Norbert: Transfer Learning for

Requirements Classification,” PP56-58

[9] H. Muccino, et al. al., (2020) “Leveraging Machine

Learning Techniques for Architecting Self Adaptive IoT

Systems,” SMARTCOMP PP-25-32

[10] D. P. Wando, (2018) “Artificial Intelligence Techniques

in Software Engineering for Automated Software Reuse and

Design,” ICCCA. PP-76-78

[11] K. Be clear, et al. al. (2021), “AI Programmer:

Autonomously Creating Software Programs Using Genetic

Algorithms,” GECCO.PP-45-48

